Java内存模型

news/2024/10/6 12:59:32

1. 硬件的效率与一致性

物理机遇到的并发问题与虚拟机中的情况有很多相似之处,物理机对并发的处理方案对虚拟机的实现也有相当大的参考意义。

“让计算机并发执行若干个运算任务”与“更充分地利用计算机处理器的效能”之间的因果关系,看起来理所当然,实际上它们之间的关系并没有想象中那么简单,其中一个重要的复杂性的来源是绝大多数的运算任务都不可能只靠处理器“计算”就能完成。处理器至少要与内存交互,如读取运算数据、存储运算结果等,这个IO操作就是很难消除的(无法仅靠寄存器来完成所有运算任务)。由于计算机的存储设备与处理器的运算速度有着几个数量级的差距,所以现代计算机系统都不得不加入一层或多层读写速度尽可能接近处理器运算速度的高速缓存(Cache)来作为内存与处理器之间的缓冲;将运算需要使用的数据复制到缓存中,让运算能快速进行,当运算结束后再从缓存同步回内存之中,这样处理器就无须等待缓慢的内存读写了。

基于高速缓存的存储交互很好地解决了处理器与内存速度之间的矛盾,但是也为计算机系统带来更高的复杂度,它引人了一个新的问题:缓存一致性(Cache Coherence)。在多路处理器系统中,每个处理器都有自己的高速缓存,而它们又共享同一主内存(Main Memory),这种系统称为共享内存多核系统(Shared Memory Multiprocessors System)。当多个处理器的运算任务都涉及同一块主内存区域时,将可能导致各自的缓存数据不一致。如果真的发生这种情况,那同步回到主内存时该以谁的缓存数据为准呢?

为了解决一致性的问题,需要各个处理器访问缓存时都遵循一些协议,在读写时要根据协议来进行操作,这类协议有MSI、MESI(Illinois Protocol)、MOSl、Synapse、Firefly及Dragon Protocol等。

对于“内存模型”一词,它可以理解为在特定的操作协议下,对特定的内存或高速缓存进行读写访问的过程抽象。不同架构的物理机器可以拥有不一样的内存模型,而Java虚拟机也有自己的内存模型,并且与这里介绍的内存访问操作及硬件的缓存访问操作具有高度的可类比性。

2. Java内存模型

《Java 虚拟机规范》中曾试图定义一种“Java 内存模型”(Java Memory Model JMM)来屏蔽各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。在此之前,主流程序语言(如C和C++等)直接使用物理硬件和操作系统的内存模型。因此,由于不同平台上内存模型的差异,有可能导致程序在一套平台上并发完全正常,而在另外一套平台上并发访问却经常出错,所以在某些场景下必须针对不同的平台来编写程序。

2.1 主内存与工作内存

Java内存模型的主要目的是定义程序中各种变量的访问规则,即关注在虚拟机中把变量值存储到内存和从内存中取出变量值这样的底层细节。此处的变量与Java编程中所说的变量有所区别,它包括了实例字段、静态字段和构成数组对象的元素,但是不包括局部变量与方法参数,因为后者是线程私有的,不会被共享,自然就不会存在竞争问题。为了获得更好的执行效能,Java内存模型并没有限制执行引擎使用处理器的特定寄存器或缓存来和主内存进行交互,也没有限制即时编译器是否要进行调整代码执行顺序这类优化措施。

Java内存模型规定了所有的变量都存储在主内存(Main Memory)中(此处的主内存与介绍物理硬件时提到的主内存名字一样,两者也可以类比,但物理上它仅是虚拟机内存的一部分)。每条线程还有自己的工作内存(Working Memory,可与前面讲的处理器高速缓存类比),线程的工作内存中保存了被该线程使用的变量的主内存副本。线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行,而不能直接读写主内存中的数据。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成。

这里所说的主内存、工作内存与Java内存区域中的Java堆、栈、方法区等并不是同一个层次的对内存的划分,这两者基本上是没有任何关系的。

如果两者一定要勉强对应起来,那么从变量、主内存、工作内存的定义来看,主内存主要对应于Java堆中的对象实例数据部分,而工作内存则对应于虚拟机栈中的部分区域。

从更基础的层次上说,主内存直接对应于物理硬件的内存,而为了获取更好的运行速度,虚拟机(或者是硬件、操作系统本身的优化措施)可能会让工作内存优先存储于寄存器和高速缓存中,因为程序运行时主要访问的是工作内存。

2.2 内存间的交互

关于主内存与工作内存之间具体的交互协议,即一个变量如何从主内存拷贝到工作内存、如何从工作内存同步回主内存这一类的实现细节,Java内存模型中定义了以下8种操作来完成。Java虚拟机实现时必须保证下面提及的每一种操作都是原子的、不可再分的(对于 double 和 long 类型的变量来说,load、store、read 和 write 操作在某些平台上允许有例外)。

  1. lock(锁定):作用于主内存的变量,它把一个变量标识为一条线程独占的状态。

  2. unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。

  3. read(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的 load 动作使用。

  4. load(载人):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。

  5. use(使用):作用于工作内存的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时将会执行这个操作。

  6. assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。

  7. store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便随后的 write 操作使用。

  8. write(写人):作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。

    如果要把一个变量从主内存拷贝到工作内存,那就要按顺序执行read和load操作。

    如果要把变量从工作内存同步回主内存,就要按顺序执行store和write操作。(不一定连续)

除此之外,Java内存模型还规定了在执行上述8种基本操作时必须满足如下规则:

  1. 不允许read和load、store和write操作之一单独出现,即不允许一个变量从主内存读取了但工作内存不接受,或者工作内存发起回写了但主内存不接受的情况出现。
  2. 不允许一个线程丢弃它最近的assign操作,即变量在工作内存中改变了之后必须把该变化同步回主内存。
  3. 不允许一个线程无原因地(没有发生过任何assign操作)把数据从线程的工作内存同步回主内存中。
  4. 一个新的变量只能在主内存中“诞生”,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量,换句话说就是对一个变量实施use、store操作之前,必须先执行 assign 和 load 操作。
  5. 一个变量在同一个时刻只允许一条线程对其进行1ock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。
  6. 如果对一个变量执行lock操作,那将会清空工作内存中此变量的值,在执行引擎使用这个变量前,需要重新执行load或assign操作以初始化变量的值。
  7. 如果一个变量事先没有被lock操作锁定,那就不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定的变量。
  8. 对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store write 操作)。

2.3 对volatile 类型变量的特殊规则

关键字 volatile 可以说是Java虚拟机提供的最轻量级的同步机制。

当一个变量被定义成volatile之后,它将具备两项特性:

第一项是保证此变量对所有线程的可见性,这里的“可见性”是指当一条线程修改了这个变量的值,新值对于其他线程来说是可以立即得知的。而普通变量并不能做到这一点,普通变量的值在线程间传递时均需要通过主内存来完成。比如,线程A修改一个普通变量的值,然后向主内存进行回写另外一条线程B在线程A回写完成了之后再对主内存进行读取操作,新变量值才会对线程B 可见。

注意:volatile变量对所有线程是立即可见的,对volatile 变量所有的写操作都能立刻反映到其他线程之中。这是正确的,但是“基于volatile 变量的运算在并发下是线程安全的”则是错误的。volatile 变量在各个线程的工作内存中是不存在一致性问题的,但是Java里面的运算操作符并非原子操作,这导致 volatile 变量的运算在并发下一样是不安全的。

由于volatile变量只能保证可见性,在不符合以下两条规则的运算场景中,我们仍然要通过加锁(使用 synchronized,java.util.concurrent 中的锁或原子类)来保证原手性:

  1. 运算结果并不依赖变量的当前值,或者能够确保证只有单一的线程修改变量的值
  2. 变量不需要与其他的状态变量共同参与不变约束。

第二项是禁止指令重排序优化,普通的变量仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果,而不能保证变量赋值操作的顺序与程序代码中的执行顺序一致。因为在同一个线程的方法执行过程中无法感知到这点,这就是Java内存模型中描述的所谓“线程内表现为串行的语义”(Within-Thread As-If-Serial Semantics)。

现在,我们来看看Java内存模型中对volatile 变量定义的特殊规则的定义。假定T表示一个线程,V和W分别表示两个 volatile 型变量,那么在进行read、load、use、assign、store 和 write 操作时需要满足如下规则:

  1. 只有当线程T对变量V执行的前一个动作是load的时候,线程T才能对变量V执行use动作;并且,只有当线程T对变量V执行的后一个动作是use的时候,线程T才能对变量V执行load动作。线程T对变量V的use动作可以认为是和线程T对变量V的load、read动作相关联的,必须连续且一起出现。
    这条规则要求在工作内存中,每次使用V前都必须先从主内存刷新最新的值用于保证能看见其他线程对变量V所做的修改。
  2. 只有当线程T对变量V执行的前一个动作是assign的时候,线程T才能对变量V执行store动作;并且,只有当线程T对变量V执行的后一个动作是store的时候,线程T才能对变量V执行assign动作。线程T对变量V的assign动作可以认为是和线程T对变量V的store、write 动作相关联的,必须连续且一起出现。
    这条规则要求在工作内存中,每次修改V后都必须立刻同步回主内存中,用于保证其他线程可以看到自己对变量V所做的修改。
  3. 假定动作A是线程T对变量V实施的use或assign动作,假定动作F是和动作A相关联的load或store动作,假定动作P是和动作F相应的对变量V的read或write动作;与此类似,假定动作B是线程T对变量W实施的use或assign动作,假定动作G是和动作B相关联的load或store动作,假定动作Q是和动作G相应的对变量W的read或write动作。如果A先于B,那么P先于Q。
    这条规则要求 volatile 修饰的变量不会被指令重排序优化,从而保证代码的执行顺序与程序的顺序相同。

2.4 对long和double型变量的特殊规则

Java内存模型要求 lock、unlock、read、load、assign、use、store、write 这八种操作都具有原子性,但是对于64位的数据类型(long和double),在模型中特别定义了一条宽松的规定:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为两次32位的操作来进行,即允许虚拟机实现自行选择是否要保证64位数据类型的load、store、read 和write 这四个操作的原子性,这就是所谓的“long和 double 的非原子性协定”(Non-Atomic Treatment of double and long Variables )。

如果有多个线程共享一个并未声明为volatile的long或double 类型的变量,并且同时对它们进行读取和修改操作,那么某些线程可能会读取到一个既不是原值,也不是其他线程修改的值,仅是一个代表了“半个变量”的数值。不过这种读取到“半个变量”的情况是非常罕见的,经过实际测试,在目前主流平台下商用的64位Java虚拟机中并不会出现非原子性访问行为,但是对于32位的Java虚拟机,譬如比较常用的32位x86平台下的HotSpot虚拟机,对 long 类型的数据确实存在非原子性访问的风险。从JDK9起,HotSpot增加了一个实验性的参数-XX:+AlwaysAtomicAccesses 来约束虚拟机对所有数据类型进行原子性的访问。而针对double类型,由于现代中央处理器中一般都包含专门用于处理浮点数据的浮点运算器(Floating Point Unit,FPU),用来专门处理单、双精度的浮点数据,所以哪怕是32位虚拟机中通常也不会出现非原子性访问的问题,实际测试也证实了这一点。在实际开发中,除非该数据有明确可知的线程竞争,否则我们在编写代码时一般不需要因为这个原因刻意把用到的long 和 double变量专门声明为 volatile。

2.5 原子性,有序性,可见性

Java内存模型是围绕着在并发过程中如何处理原子性、可见性和有序性这三个特征来建立的,我们逐个来看一下哪些操作实现了这三个特性。

  1. 原子性(Atomicity)
    由Java 内存模型来直接保证的原子性变量操作包括read、load、assign、use、store 、write 这六个,我们大致可以认为,基本数据类型的访问、读写都是具备原子性的(例外就是long和double的非原子性协定)。
    如果应用场景需要一个更大范围的原子性保证(经常会遇到),Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter 和monitorexit来隐式地使用这两个操作。这两个字节码指令反映到Java代码中就是同步块——synchronized 关键字,因此在synchronized 块之间的操作也具备原子性。

  2. 可见性(Visibility)
    可见性就是指当一个线程修改了共享变量的值时,其他线程能够立即得知这个修改。Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此。普通变量与volatile变量的区别是,volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。因此我们可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。

    除了 volatile 之外,Java还有两个关键字能实现可见性,它们是synchronized和final,同步块的可见性是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行 store、write 操作)”这条规则获得的。而 final关键字的可见性是指:被 final修饰的字段在构造器中一旦被初始化完成,并且构造器没有把“this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那么在其他线程中就能看见final字段的值。

  3. 有序性(Ordering)
    Java程序中天然的有序性可以总结为一句话:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句是指“线程内似表现为串行的语义”( Within-Thread As-If-Serial Semantics),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。

    Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性。volatile 关键字本身就包含了禁止指令重排序的语义,而synchronized 则是由“一个变量在同一个时刻只允许一条线程对其进行1ock操作”这条规则获得的,这个规则决定了持有同一个锁的两个同步块只能串行地进入。

2.6 Happens-Before原则

如果Java内存模型中所有的有序性都仅靠volatile和synchronized来完成,那么有很多操作都将会变得非常啰嗦,但是我们在编写Java并发代码的时候并没有察觉到这一点,这是因为Java语言中有一个“先行发生”(Happens-Before)的原则。这个原则非常重要,它是判断数据是否存在竞争,线程是否安全的非常有用的手段。依赖这个原则,我们可以通过几条简单规则一揽子解决并发环境下两个操作之间是否可能存在冲突的所有问题,而不需要陷入 Java 内存模型苦涩难懂的定义之中。

先行发生是Java内存模型中定义的两项操作之间的偏序关系,比如说操作A先行发生于操作B,其实就是说在发生操作B之前,操作A产生的影响能被操作B观察到,“影响”包括修改了内存中共享变量的值、发送了消息、调用了方法等。

下面是Java内存模型下一些“天然的”先行发生关系,这些先行发生关系无须任何同步器协助就已经存在,可以在编码中直接使用。如果两个操作之间的关系不在此列,并且无法从下列规则推导出来,则它们就没有顺序性保障,虚拟机可以对它们随意地进行排序。

  1. 程序次序规则(Program Order Rule):在一个线程内,按照控制流顺序,书写在前面的操作先行发生于书写在后面的操作。注意,这里说的是控制流顺序而不是程代码顺序,因为要考虑分支、循环等结构。
  2. 管程锁定规则(Monitor Lock Rule):一个unlock 操作先行发生于后面对同一个锁的lock 操作。这里必须强调的是“同一个锁”,而“后面”是指时间上的先后。
  3. volatile 变量规则(Volatile Variable Rule):对一个 volatile 变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后。
  4. 线程启动规则(Thread Start Rule):Thread 对象的 start()方法先行发生于此线程的每一个动作。
  5. 线程终止规则(Thread Termination Rule):线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread::join()方法是否结束、Thread::isAlive( )的返回值等手段检测线程是否已经终止执行。
  6. 线程中断规则(Thread Interruption Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread::interrupted()方法检测到是否有中断发生。
  7. 对象终结规则(Finalizer Rule):一个对象的初始化完成(构造函数执行结束)先行发生于它的 finalize()方法的开始。
  8. 传递性(Transitivity):如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ryyt.cn/news/68296.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈,一经查实,立即删除!

相关文章

vue3 computed

computed 的作用就是监测变量是否发生改变。如果变量发生了改变,那么computed定义的方法就会执行。 在vue3中computed新增get 和set方法。分别对应修改和设置值

洪海洋的博客自我介绍

欢迎来到洪海洋的博客 我个人的基本信息 1.你的姓名? 如标题所示,洪海洋。英文名则是OCEAN,“海洋”,这一般也会作为我的网名。 2.为什么起这样的名字? emmm...五行缺水 3.描述一下自己? 多元、社恐、耐心 4.为什么这样描述自己? 对于我来说,多元包含很多个领域,比如我…

树上深度和问题 - 换根DP

问题引出: 给出 \(n\) 个点的树,求出分别以不同的 \(i\) 为根时,所有结点深度的和,根节点的深度为 \(0\)。 首先我们有个自然的暴力思路, 也就是以每个节点为根节点做一遍 \(dfs\) 这样的复杂度是 \(O(n^2)\) 级别的, 所以要进行优化 看下图:我们首先假设每个节点具有点权, …

珂朵莉树(ODT)

前言 主要是一种暴力思想。。。 本文来自 wiki 与洛谷题解的整合。 应用 主要是应付随机数据(区间操作) 实现 有几个核心操作。 set实现方法 定义 struct node {intt l,r;//intt:long longmutable intt v;node(const intt &ll,const intt &rr,const intt &vv) : …

高效开发Maven架构设计图解/掌握项目工程自动化技巧(精通篇一)

Maven是一个项目管理和构建自动化工具,主要服务于基于Java的项目。它使用一个名为POM(Project Object Model)的XML文件来描述项目的构建过程、依赖、插件等信息。肖哥弹架构 跟大家“弹弹” 高并发锁, 关注公号回复 mvcc 获得手写数据库事务代码 欢迎 点赞,关注,评论。…

20222406 2024-2025-1 《网络与系统攻防技术》实验一实验报告

20222406 2024-2025-1 《网络与系统攻防技术》实验一实验报告 1.实验内容 本周深入学习了缓冲区溢出相关内容,收获颇丰。 一、理论知识学习学习了缓冲区溢出的基本知识,包括汇编语言,了解了常见的指令如mov(数据传送)、push(压栈)、pop(出栈)、call(调用函数)等的基…

Markdown格式学习

Markdown格式学习 掌握内容 标题:使用 # 来表示不同级别的标题,如 # 表示一级标题,## 表示二级标题 有序列表:使用数字加点来创建,如 1., 2.。 链接:使用 链接描述。 强调:使用 * 或 _ 来表示斜体(两边各一个),使用两个 ** 或 __ 来表示粗体。 表格:使用 | 和 - 来创…

免费在线音频转字幕网站 All In One

免费在线音频转字幕网站 All In One 利用 AI 将语音转成文本 使用 AI 为视频添加字幕 free online Speech to Text websites免费在线音频转字幕网站 All In One利用 AI 将语音转成文本 / 使用 AI 为视频添加字幕free online Speech to Text websites 每天三次免费https://turbo…