门罗币隐私保护之环签名

news/2024/10/22 21:12:21

主页

微信公众号:密码应用技术实战
博客园首页:https://www.cnblogs.com/informatics/
GIT地址:https://github.com/warm3snow

简介

在《门罗币隐私保护之隐形地址》文章中,我们重点介绍了门罗币Monero的隐形地址技术,门罗币通过隐形地址保证了交易的不可链接性,并实现了用户的隐私保护和监管需求。

本文将继续介绍门罗币的另一个核心技术——环签名技术,Monero通过环签名技术,实现了交易的不可追踪性。

  • 不可链接性(Unlinkability):对于任何两笔outgoing交易,无法证明它们是发送给同一个人的。即对于任何两个 outgoing 交易,无法证明它们是由同一个人收款的。
  • 不可追踪性(Untraceability):对于每一笔incoming交易,所有可能的发送者都是等概率的。这意味着,对于任何两个incoming交易,无法证明它们是由同一个人发送的。

注:incoming和outgoing交易分别表示用户的收款和支出交易。

基础知识

术语定义

  • \(\mathbb{Z}_l\):有限域,\(l\)是一个大素数,如:\(l = 2^{252} + 27742317777372353535851937790883648493\)
  • \(P_i\):公钥,在环签名中表示环中第\(i\)个公钥, 当\(i = s\)时,\(P_s\)是签名者的公钥
  • \(R\):环签名的环,一组公钥的集合,\(R = {P_1, P_2, ..., P_n}\),包含\(P_s\)
  • \(x_s\)或者x_s:环签名中签名者的私钥, 私钥范围在\(\mathbb{Z}_l\)
  • \(\sigma\):环签名的签名结果
  • \(m\):待签名的消息。在签名时,通常会先对消息进行哈希处理。
  • \(H_s\):特性哈希函数, 将输入映射到\(\mathbb{Z}_l\),如:\(H_s: \{0, 1\}^* \rightarrow \mathbb{Z}_l\)
  • \(H_p\):特性哈希函数, 将输入映射到椭圆曲线上的点,如:\(H_p: \{0, 1\}^* \rightarrow E(\mathbb{F}_q)\)
  • \(I\):密钥镜像,在门罗币中使用,用于防止双花攻击

环签名

环签名(Ring Signature)是一种数字签名方案,允许一组用户中的任何一个用户为某个消息生成签名,而不需要透露具体是哪个用户生成的签名。环签名的主要特点是它提供了签名匿名性可验证性,确保签名者的身份在签名过程中保持隐私。

环签名的基本概念

  • :环签名的“环”指的是一组公钥,这些公钥代表了可能的签名者。签名者在生成签名时,会选择一个环中的公钥作为自己的身份,但外部观察者无法确定具体是哪个公钥对应的用户。
  • 签名:签名者使用自己的私钥和环中其他用户的公钥生成签名。这个签名可以被任何人验证,但无法确定签名者的身份。
  • 验证:任何人都可以使用环来验证签名的有效性,确保签名确实是由环中的某个用户生成的。

环的大小是环签名方案的一个重要参数,环越大,签名者的身份越难以确定,签名的匿名性越高。但是环的大小也会影响签名的计算和验证性能,因此需要在匿名性和性能之间进行权衡。

环签名构造和验证流程

image

  1. 初始化:签名者Bob选择环R中的公钥,如{\({P_1, P_2, ..., P_i, ..., P_n}\)},其中Bob自身的公钥\(P_s\)也在放入环R中
  2. 生成签名:Bob基于环R中的公钥和自己的私钥\(x_s\)以及待签名消息\(m\),生成环签名\(\sigma\)
  3. 验证签名:任何人都可以基于环R,消息m对签名\(\sigma\)进行验证

环签名方案涉及一个三元组\((KeyGen, Sign, Verify)\),其中:

  • \(KeyGen\):密钥生成算法,签名者使用\(KeyGen\)生成公私钥对\((P_s, x_s)\)
  • \(Sign(m, R, x_s)\):签名算法,签名者使用\(Sign\)生成环签名\(\sigma\), 其中\(m\)是消息,\(R\)是环,\(x_s\)是签名者的私钥
  • \(Verify(m, R, \sigma)\):验证算法,任何人都可以使用\(Verify\)验证签名的有效性。算法结果为布尔值,\(true\)表示签名有效,\(false\)表示签名无效。

门罗币之环签名

回顾在《门罗币隐私保护之隐形地址》介绍的交易模型,Bob作为收款方,能够验证每一笔相关交易的有效性。

image

进一步说明:

  • Bob作为收款人,在验证每笔交易时,Bob只需对每个输出执行两次椭圆曲线乘法和一次加法(即生成\(P'\)),以检查该交易是否属于他。
  • 对于每个属于Bob的UTXO,Bob恢复一个密钥对\((x, P)\)并将其存储在钱包中。
  • 只有Bob可以生成地址\(P\)的私钥\(x\),因此只有Bob能够花费这笔收入。

值得注意的是,\((P, x)\)一次性密钥,当Bob花费这笔收入时,会使用该密钥参与环签名,之后可以丢弃。

门罗币环签名

门罗币使用环签名技术,实现了交易的不可追踪性。门罗币的环签名方案基于CryptoNote协议。在CryptoNode协议中,环签名交易模型如下:

image

  • 加入环:Bob从门罗币公开账本中随机选择UTXO,以及自己待花费的UTXO,放入到新创建的UTXO中,作为交易的Tx input, 所有UTXO的收款方地址{\({P_1, ..., P_s, ..., P_n}\)}构成环\(R\)
  • 生成密钥镜像:Bob使用自己的签名私钥\(x_s\)和公钥\(P_s\), 生成密钥镜像\(I\),区块链矿工在验证交易时,会验证\(I\)是否已经被使用过,以防止双花攻击
  • 生成签名:Bob使用环\(R\)和自己的私钥\(x_s\),对交易进行签名,生成环签名\(\sigma\)

门罗币环签名方案

门罗币环签名方案涉及一个四元组\((KeyGen, Sign, Verify, Link)\),其中:

  • \(KeyGen, Sign, Verify\)与一般的环签名方案功能类似
  • \(Link\):区块链矿工通过\(Link\)算法验证对应的密钥镜像\(I\)是否已经被使用过,以防止双花攻击

密钥生成KeyGen

门罗币的KeyGen算法与一般的环签名方案类似,目的都是生成公私钥对\((P_s, x_s)\),其中\(P_s\)是签名者的公钥,\(x_s\)是签名者的私钥。
不同的是:

  • 门罗币的公钥来自于隐形地址技术,即\(P_s = H_s(aR)G + B\), 对应的私钥\(x_s = H_s(aR) + b\)
  • 门罗币的KeyGen算法还会生成密钥镜像\(I\),用于防止双花攻击。其中, \(I = x_s \cdot H_p(P_s)\)

签名算法Sign

在门罗币中,由于签名公私钥对\((P_s, x_s)\)是由隐形地址技术生成的,并且仅用于一次性签名,因此门罗币环签名我们也称为一次性环签名

门罗币的Sign算法如下:

  1. 初始化:

    • 随机选取其他用户的公钥\(P_i\),结合自己的公私钥对\((x_s, P_s)\),构成环\(R = {P_1, P_2, ..., P_s, ..., P_n}\)
    • 选择两个随机数集合\(Q\)\(W\),如下
      • \(Q = \{q_i\}\), \(i = 1, 2, ..., n \And q_i \in \mathbb{Z}_l\)
      • \(W = \{w_i\}\), \(i = 1, 2, ..., n \And i \neq s \And w_i \in \mathbb{Z}_l\)
  2. 计算环签名(类似零知识承诺:承诺-挑战-响应,可以参考之前的文章《零知识证明之承诺方案》

    • 计算承诺,承诺由两个集合组成\(L\)\(R\),集合元素计算如下:

      \[L_i = \begin{cases}q_i \cdot G + w_i \cdot P_i & \text{if } i \neq s \\q_s \cdot G & \text{if } i = s\end{cases} \]

      \[R_i =\begin{cases}q_i \cdot H_p(P_i) + w_i \cdot I & \text{if } i \neq s \\q_s \cdot H_p(P_s) & \text{if } i = s\end{cases} \]

    • 计算挑战(实际上是前面已有知识的哈希值)

      \[c = H_s(m, L, R) = H_s(m, L_1, ..., L_n, R_1, ..., R_n) \]

      其中,\(m\)是待签名的消息,在这里表示交易信息(签名除外,因为签名还未生成)

    • 计算响应

    \[c_i =\begin{cases}w_i & \text{if } i \neq s \\c - \sum_{i \neq s, i = 0}^{n} c_i \mod l & \text{if } i = s\end{cases} \]

    \[r_i =\begin{cases}q_i & \text{if } i \neq s \\q_s - c_s \cdot x_s \mod l & \text{if } i = s\end{cases} \]

    \[\sigma = (I, c_1, ..., c_n, r_1, ..., r_n) \]

    其中,\(\sigma\)就是环签名的签名值,\(\sigma\)

验证算法Verify

image

区块链矿工在收到交易后,会对交易进行签名验证。矿工已知\(R = {P_1, P_2, ..., P_n}\),以及环签名\(\sigma = (I, c_1, ..., c_n, r_1, ..., r_n)\), 签名验证Verify算法如下:

  • \(L^{'}\)\(R^{'}\)为两个集合,\(\forall i \in [0, n]\)

\[L_i^{'} = r_i \cdot G + c_i \cdot P_i \]

\[R_i^{'} = r_i \cdot H_p(P_i) + c_i \cdot I \]

  • 签名验证等式

\[\sum_{i=0}^{n} c_i \stackrel{?}{=} H_s(m, L^{'}, R^{'}) \]

如果上述等式成立,则签名有效,否则签名无效,交易被拒绝。

正确性验证

  • 计算\(L^{'}\)

\[L_i^{'} = r_i \cdot G + c_i \cdot P_i = \]

\[\begin{cases} q_i \cdot G + w_i \cdot P_i & \text{if } i \neq s \\ (q_s - c_s \cdot x_s) \cdot G + c_s \cdot P_s = q_s \cdot G - c_s \cdot x_s \cdot G + c_s \cdot P_s = q_s \cdot G & \text{if } i = s \end{cases} \]

\[= \begin{cases} q_i \cdot G + w_i \cdot P_i & \text{if } i \neq s \\ q_s \cdot G & \text{if } i = s \end{cases} \]

\[= L_i \]

在上述推导中,由于\(P_s = x_s \cdot G\),所以:\(-c_s \cdot x_s \cdot G + c_s \cdot P_s = -c_s \cdot P_s + c_s \cdot P_s = 0\)

  • 计算\(R^{'}\)

\[R_i^{'} = r_i \cdot H_p(P_i) + c_i \cdot I = \]

\[\begin{cases} q_i \cdot H_p(P_i) + w_i \cdot I & \text{if } i \neq s \\ (q_s - c_s \cdot x_s) \cdot H_p(P_s) + c_s \cdot I = q_s \cdot H_p(P_s) - c_s \cdot x_s \cdot H_p(P_s) + c_s \cdot I = q_s \cdot H_p(P_s) & \text{if } i = s \end{cases} \]

\[= \begin{cases} q_i \cdot H_p(P_i) + w_i \cdot I & \text{if } i \neq s \\ q_s \cdot H_p(P_s) & \text{if } i = s \end{cases} \]

\[= R_i \]

在上述推导中,由于\(I = x_s \cdot H_p(P_s)\),所以:\(-c_s \cdot x_s \cdot H_p(P_s) + c_s \cdot I = -c_s \cdot I + c_s \cdot I = 0\)

  • 计算\(\sum_{i=0}^{n} c_i\)

\[\sum_{i=0}^{n} c_i = c_1 + c_2 + ... + c_s + ... + c_n \]

\[= \sum_{i \neq s, i = 0}^{n} c_i + c_s \]

\[= \sum_{i \neq s, i = 0}^{n} w_i + (c - \sum_{i \neq s, i = 0}^{n} c_i \mod l) \]

\[= c \]

\[= H_s(m, L, R) \]

由于\(L^{'} = L\)\(R^{'} = R\),所以:

\[H_s(m, L^{'}, R^{'}) = H_s(m, L, R) = c \]

因此,签名验证等式成立,签名有效。

,密钥镜像和密钥对之间的关系如下:

\[I = x_s \cdot H_p(P_s) \]

密钥镜像\(I\)的计算方式,反映了用户密钥和密钥镜像之间存在一一对应关系,而用户密钥(x, P)基于隐形地址技术,只使用一次,且与交易绑定。
矿工会记录所有交易的密钥镜像列表,在收到新交易时,会检查交易中的\(I\)是否已存在于列表中,如果存在,则说明该交易的(x, P)已经被使用过,是一笔双花交易,交易被拒绝。

结语

环签名是门罗币的另一个核心技术,通过环签名技术,实现了交易的不可追踪性。本文简单介绍了环签名的基本概念,并详细介绍了门罗币的环签名方案,包括密钥生成、签名、验证和双花验证等算法。希望通过本文的介绍,读者对隐私币的匿名技术有更进一步的了解。

门罗币隐私保护使用了多种技术,包括隐形地址、环签名、机密交易等,这些技术共同构成了门罗币的隐私保护体系。在接下来的文章中,我们将继续介绍门罗币的其他隐私保护技术。

参考文献

  • 【1】CryptoNote wiki
  • 【2】Monero wiki
  • 【3】Home | Monero - secure, private, untraceable
  • 【4】Elliptic-curve cryptography
  • 【5】CryptoNote whitepaper v2.0
  • 【6】《零知识证明之承诺方案》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ryyt.cn/news/74808.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈,一经查实,立即删除!

相关文章

Maven的学习

Maven 安装与配置 今天我们来学习一下Maven,Maven就相当于一个管理的工具,原理就是使用一个插件,这个插件由多个jar包构成。 在一个公司的项目开发过程中,一个大的项目通常被分为好几个小的模块,由不同的人去完成,但是不同的人在开发的过程中,使用的组件,jar包难免会有…

jdk8中文文档及安卓阅读器

例:下载链接: 文档(密码:76nh) 软件(密码:5wrj) 原文链接: http://466dd.com

7-1计算阶乘和【PTA嵌套循环程序设计】

嵌套循环程序设计 7-1计算阶乘和#include<stdio.h>int f(int a){int sum = 1;for(int i=1;i<=a;i++){sum *= i;}return sum;}//构造N!函数int main(){int N = 0,sum = 0;//初始化scanf("%d",&N);if(N>1){for(int i=1;i<=N;i++){sum += f(i);//实…

从认识 Kubernetes 开始

你也说,我也说,那什么是 K8s 呢?Author: ACatSmiling Since: 2024-10-21认识 Kubernetes 什么是 Kubernetes 官方网站:https://kubernetes.io Kubernetes,是 Google 严格保密十几年的秘密武器 Borg 系统的一个开源版本,于 2014 年 9 月发布第一个版本,2015 年 7 月发布第…

java的三大程序结构

JAVA的三大程序结构 一:顺序结构 程序走上执行到下。 二:选择结构 if单选择结构 if(布尔表达式){ //如果布尔表达式的值为ture则执行{}里的语句块 } public class IfDemo01 {public static void main(String[] args) {//接收键盘输入Scanner scanner = new Scanner(System.…

CSP模拟赛 #42

#40 懒得写了,#41 题目质量过低。A 有 \(n\) 张长度为 \(m\) 的纸条,每张纸条有 \(k_i\) 个位置有小写字母,其他位置透明。你需要合理从上到下排列这些纸条,使得最终在上方看到的字符串为 \(s\),保证对于每个位置,至少一张纸条在该位置有一个字母。给出方案或无解。 \(1\…

markdown转pdf,方法总结

总结使用1. VScode插件Markdown Preview Enhanced。格式是正确的。但是无法批处理和指令处理2. pandoc --pdf-engine=typst。无法导出粗体和斜体需求 markdown格式转为pdf我遇到的: 1. 我现在想把多个八股文文档(GitHub项目里的 scutan90/DeepLearning-500-questions: 深度学…

苦寻多日,终于搞定了地形切片,向大家安利一下这款超简单的免费GIS工具箱

概述 地形切片是将大范围的地形数据分割成小块(切片)进行存储和展示的技术,常用于高效的三维地形可视化和动态加载。在实际操作中,可以通过GISBox等工具进行地形切片处理。今天和大家安利的GISBox 是一个用于GIS模型切片、服务分发的免费GIS工具箱,其中包括了支持地形切片…