基于Ascend C的Matmul算子性能优化最佳实践

news/2024/10/23 3:31:24

本文分享自华为云社区《基于Ascend C的Matmul算子性能优化最佳实践》,作者:昇腾CANN。

矩阵乘法是深度学习计算中的基础操作,对于提升模型训练和推理速度至关重要。昇腾AI处理器是一款专门面向AI领域的AI加速器,其AI Core采用达芬奇架构,以高性能Cube计算引擎为基础,针对矩阵运算进行加速,可大幅提高单位面积下的AI算力。Matmul算子实现的功能是矩阵乘法,通过Ascend C算子编程语言优化该算子的实现逻辑,可以使其在昇腾AI处理器上获得更优的执行性能。希望通过本案例的讲解,可以为开发者优化昇腾Cube类算子性能带来启发。

 

本案例以矩阵维度M = 4096,N = 5120,K = 4096,输入数据类型half,输出数据类型float,输出格式是ND为例,性能验证平台为Atlas A2训练系列产品/Atlas 800I A2推理产品,介绍针对Matmul算子的主要优化手段,包括优化分核逻辑、优化基本块、开启大包搬运。

  • 优化分核逻辑:开启尽量多的Cube核使能并行计算。

  • 优化基本块,选择最优的baseM、baseN、baseK参数。

  • 开启大包搬运:从Global Memory搬运数据到L1时,对于A矩阵,一次搬入depthA1个基本块,基本块大小为baseM * baseK,对于B矩阵,一次搬入depthB1个基本块,基本块大小为baseN * baseK。使能大包搬运后,一次搬入的数据量变大,提升MTE2搬运效率。

分析主要瓶颈点

借助昇腾Profiling性能数据可较方便地分析主要瓶颈点,这里我们重点分析MTE2,Cube,Scalar pipeline的流水情况,其中MTE2(Memory Transfer Engine)pipeline反映了数据的搬入情况,Cube和Scalar pipeline则反映了AI Core中的数据计算及标量的使用情况。

优化前Profiling数据如下图所示:

从上图Profiling数据来看,aic_mte2_ratio数值是0.973,这表明MTE2类型指令的cycle数在total cycle数中的占比过大,这意味着当前性能瓶颈点可能在于MTE2流水。此外,从图中的Block Dim数值4也可以看到,参与计算的AI处理器核并没有用满,这里假设当前案例使用的AI处理器上共有20个核。整体优化思路如下:

  • 优化分核逻辑,假设CurrentCore是未优化前分核的Cube核数,MaxCore为最大Cube核数,当开启全部核并行做当前shape数据量的计算时,预估性能收益约为MaxCore / CurrentCore的倍数。

  • 优化基本块切分将影响搬运数据的效率,算子搬运的总数据量为搬运的左矩阵和右矩阵数据量之和。根据矩阵乘法的算法,搬运左矩阵的次数为N / baseN,搬运右矩阵的次数为M / baseM,即搬运总数据量totalCnt = (N / baseN) * M * K + (M / baseM) * K * N。预估性能收益为搬运数据量的比值,优化前搬运数据量totalCnt0/优化后搬运数据量totalCnt1,化简后结果为(1 / baseM0 + 1 / baseN0) / (1 / baseM1 + 1 / baseN1),其中,baseM0, baseN0为优化前基本块参数,baseM1, baseN1为优化后基本块参数。

  • 开启大包搬运后,指令条数变化、地址对齐等因素会影响性能,按照经验预估,对于MTE2为性能瓶颈的场景,会有20%以上的MTE2性能收益。

优化分核逻辑

由Profiling数据看出分核数为4,启动更多的核同时计算,可以提高计算并行度。在当前案例使用的AI处理器上共20个核,每个核中包含1个Cube Core和2个Vector Core。程序中设置blockDim为实际使用的核数20。

// 代码片段 
uint32_t blockDim = 20; // 优化前blockDim为4 
CHECK_ACL(aclInit(nullptr)); 
aclrtContext context; 
int32_t deviceId = 0; 
CHECK_ACL(aclrtSetDevice(deviceId)); 
CHECK_ACL(aclrtCreateContext(&context, deviceId)); 
aclrtStream stream = nullptr; 
CHECK_ACL(aclrtCreateStream(&stream)); uint8_t *aHost; 
uint8_t *aDevice; 
CHECK_ACL(aclrtMallocHost((void **)(&aHost), aFileSize)); 
CHECK_ACL( 
aclrtMalloc((void **)&aDevice, aFileSize, ACL_MEM_MALLOC_HUGE_FIRST)); 
ReadFile("./input/x1_gm.bin", aFileSize, aHost, aFileSize); 
// PrintData(aHost, 16, printDataType::HALF); 
CHECK_ACL(aclrtMemcpy(aDevice, aFileSize, aHost, aFileSize, 
ACL_MEMCPY_HOST_TO_DEVICE)); uint8_t *bHost; 
uint8_t *bDevice; 
CHECK_ACL(aclrtMallocHost((void **)(&bHost), bFileSize)); 
CHECK_ACL( 
aclrtMalloc((void **)&bDevice, bFileSize, ACL_MEM_MALLOC_HUGE_FIRST)); 
ReadFile("./input/x2_gm.bin", bFileSize, bHost, bFileSize); 
// PrintData(bHost, 16, printDataType::HALF); 
CHECK_ACL(aclrtMemcpy(bDevice, bFileSize, bHost, bFileSize, 
ACL_MEMCPY_HOST_TO_DEVICE)); uint8_t *workspaceHost; 
uint8_t *workspaceDevice; 
CHECK_ACL(aclrtMallocHost((void **)(&workspaceHost), workspaceSize)); 
CHECK_ACL(aclrtMalloc((void **)&workspaceDevice, workspaceSize, 
ACL_MEM_MALLOC_HUGE_FIRST)); uint8_t *tilingHost; 
uint8_t *tilingDevice; 
CHECK_ACL(aclrtMallocHost((void **)(&tilingHost), tilingFileSize)); 
CHECK_ACL(aclrtMalloc((void **)&tilingDevice, tilingFileSize, 
ACL_MEM_MALLOC_HUGE_FIRST)); 
CHECK_ACL(aclrtMemcpy(tilingHost, tilingFileSize, GenerateTiling(), 
tilingFileSize, ACL_MEMCPY_HOST_TO_HOST)); 
// PrintData(tilingHost, 16, printDataType::UINT32_T); 
CHECK_ACL(aclrtMemcpy(tilingDevice, tilingFileSize, tilingHost, 
tilingFileSize, ACL_MEMCPY_HOST_TO_DEVICE)); uint8_t *cHost; 
uint8_t *cDevice; 
CHECK_ACL(aclrtMallocHost((void **)(&cHost), cFileSize)); 
CHECK_ACL( 
aclrtMalloc((void **)&cDevice, cFileSize, ACL_MEM_MALLOC_HUGE_FIRST)); matmul_custom_do(blockDim, stream, aDevice, bDevice, cDevice, workspaceDevice, tilingDevice);

由于Matmul API都是从Vector侧发起的,按照Cube Core和Vector Core的配比1:2,在Matmul tiling计算中需要按照2倍的blockDim数切分,因此Tiling代码中,设置Tiling API按照40个核进行数据切分,如下代码所示。

int usedCoreNum = 40; // 优化前usedCoreNum是8 
int runMode = 1; 
int32_t baseM = 64; // 64 
int32_t baseN = 64; // 64 
optiling::TCubeTiling tilingData; 
auto ascendcPlatform = platform_ascendc::PlatformAscendCManager::GetInstance(socVersion);     
MultiCoreMatmulTiling tilingApi(*ascendcPlatform); 
tilingApi.SetDim(usedCoreNum);

修改代码后,算子执行时间(对应aicore_time)从12045us下降到2532us,约等于(20核 / 4核) = 5倍的性能提升。

优化分核逻辑后Profilling数据如下图所示:

优化基本块

当前Tiling中设置的base块为 [baseM, baseN, baseK] = [64, 64, 256],这种基本块Cube计算cycle少,计算访存比(即计算量与需要数据量的比值)低;搬出一次Matmul结果到Global Memory的base块是64 * 64,由于输出格式是ND,数据类型是float,搬出下一次Matmul结果的起始地址需要偏移一个baseN的大小,即64 * 4 = 256字节,导致fixpipe搬出时Global Memory地址非512byte对齐,那么需要设置更优的基本块。

 

针对当前shape较大的场景,基本块的选择原则为计算访存比最大,即在Cube计算量最大的情况下,访存的数据量最小。在输入为fp16类型的情况下,Cube执行单元1 cycle能算16 * 16 * 16个数。根据经验,[baseM, baseN, baseK] = [128, 256, 64]和[128, 128, 128]两种切分方案均满足搬出时Global Memory地址512Byte对齐(每搬出一次Matmul结果时,地址分别偏移256 * 4byte和128 * 4byte),Cube计算cycle数一致,为(128 * 64 * 256) / (16 * 16 * 16) = (128 * 128 * 128) / (16 * 16 * 16) = 512cycle。

 

针对[baseM, baseN, baseK] = [128, 256, 64],计算访存比为512cycle / (128 * 64 * 2 + 256 * 64 * 2) = 512cycle / 48KB;针对[baseM, baseN, baseK] = [128, 128, 128],计算访存比为512cycle / (128 * 128 * 2 + 128 * 128 * 2) = 512cycle / 64KB。可见,[128, 256, 64]基本块方案的计算访存比更高,计算密度更大,同样的计算量,需要的数据量最小,可最大限度地提高Cube单元计算量。

 

修改Tiling代码,通过SetFixSplit()接口设置baseM和baseN,tiling函数会自动计算出最优baseK,这里得到64。

int32_t baseM = 128; // 优化前baseM是64 
int32_t baseN = 256; // 优化前baseN是64 optiling::TCubeTiling tilingData; 
auto ascendcPlatform = platform_ascendc::PlatformAscendCManager::GetInstance(socVersion);     
MultiCoreMatmulTiling tilingApi(*ascendcPlatform); 
tilingApi.SetDim(usedCoreNum); 
tilingApi.SetAType(leftPos, leftFormat, leftDtype, bool(transposeA)); 
tilingApi.SetBType(rightPos, rightFormat, rightDtype, bool(transposeB)); 
tilingApi.SetCType(resPos, resFormat, resDtype); 
tilingApi.SetBiasType(biasPos, biasFormat, biasDtype); tilingApi.SetOrgShape(M, N, K); 
tilingApi.SetShape(M, N, K); 
tilingApi.SetFixSplit(baseM, baseN, -1);

从下图可以看到,使能这组基本块后,MTE2耗时(对应aic_mte2_time)从2452us降低到808us,MTE2性能提升3倍。

优化基本块后Profilling数据如下图所示:

使能大包搬运

当前带宽利用率为:totalSize / mte2Time = totalCnt * dtype / mte2Time,代入数据计算为 2491GB/s。未使能大包搬运的情况下,矩阵从Global Memory搬运到L1一次只搬运1个基本块。通过模板参数使能大包搬运,一次搬运多个基本块,提高MTE2带宽利用率。

// 原始matmul对象定义: 
Matmul<MatmulType<TPosition::GM, CubeFormat::ND, A_T>, 
MatmulType<TPosition::GM, CubeFormat::ND, B_T>, 
MatmulType<TPosition::GM, CubeFormat::ND, C_T>, 
MatmulType<TPosition::GM, CubeFormat::ND, BiasT>>> 
mm; 
// 通过在定义matmul对象的模板参数里加上CFG_MDL参数使能大包搬运功能: 
Matmul<MatmulType<TPosition::GM, CubeFormat::ND, A_T>, 
MatmulType<TPosition::GM, CubeFormat::ND, B_T>, 
MatmulType<TPosition::GM, CubeFormat::ND, C_T>, 
MatmulType<TPosition::GM, CubeFormat::ND, BiasT>, CFG_MDL>> 
mm;

从下图可以看到,使能大包搬运后,MTE2耗时从808us下降到591us,带宽利用率代入数据计算为3406GB/s,利用率提升36%+,Cube利用率(对应aic_mac_ratio)达到80%+。

使能大包搬运后Profilling数据如下图所示:

验证优化方案性能收益

  • 优化分核逻辑,实际收益75倍,约等于(20核 / 4核) = 5倍收益,并且考虑到核的启动开销,可以认为两者基本一致。

  • 优化基本块,实际收益约3倍,理论评估带入上述分析公式,收益为(1 / 64 + 1 / 64) / (1 / 128 + 1 / 256),约等于7倍,考虑到cache缓存的影响,可以认为两者基本一致。

  • 大包搬运,大包搬运实际收益25%+,与经验值基本一致。

 

但需要注意的是,优化分核逻辑和基本块一般在输入数据shape足够大、数据量足够多时,才能分满核和使能最优的基本块。因此,大shape场景下MTE2 Bound算子可参考此案例的优化手段。

更多学习资源

了解更多Ascend C算子性能优化手段和实践案例,请访问昇腾社区Ascend C信息专区:https://www.hiascend.com/ascend-c

相关推荐阅读:

《基于Ascend C的FlashAttention算子性能优化最佳实践

 

华为开发者空间,汇聚鸿蒙、昇腾、鲲鹏、GaussDB、欧拉等各项根技术的开发资源及工具致力于为每位开发者提供一台云主机、一套开发工具及云上存储空间,让开发者基于华为根生态创新。

点击链接,免费领取您的专属云主机

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ryyt.cn/news/72184.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈,一经查实,立即删除!

相关文章

CSP - Content Security Policy

检验地址CSP Evaluator规则HTTP内容安全策略参考所有以 结尾的指令都-src支持类似的值,称为源列表。多个源列表值可以用空格分隔,但none其中一个值应是唯一的。

网站怎么修改记住密码?网站用户名怎么修改密码?

修改记住密码功能登录网站:首先,你需要登录到你的账户。 进入账户设置:找到并点击账户设置或个人资料选项。 查找安全设置:在账户设置中,找到与安全相关的设置部分。 修改记住密码设置:通常会有“记住我”或“自动登录”的选项,你可以根据需要开启或关闭此功能。修改网站…

怎么修改网站admin密码?网站后台修改器?

修改网站管理员(admin)密码的方法取决于你使用的网站平台或CMS(内容管理系统)。以下是一些常见平台的修改方法: 1. WordPress通过WordPress后台:登录到WordPress管理面板。 进入“用户” > “所有用户”。 找到管理员账户,点击“编辑”。 在“账户密码”部分输入新密…

GitLab 老旧版本升级难?极狐GitLab 专家来帮忙!

极狐GitLab 正式对外推出 GitLab 专业升级服务! 专业的技术人员为您的 GitLab 老旧版本实例进行专业升级!服务详情可以在官网查看详细解读! 那些因为老旧版本而被攻击的例子 话不多说,直接上图,看一个活生生的例子: 因为安全漏洞,GitLab 被攻击!图中的用户使用了 GitLa…

如何修改word默认模板(Normal.dotm)

背景描述:平时有大量的文字编辑工作要做,其中最繁琐的就是格式问题;为了排版工整、符合要求,在每个word中都要进行大量的更改,如:字体、大小、行距、段前段后间距等......但这其中有很多的重复性工作,不同文件要求的大致格式总是一致的;那么是否有一种方法,能让我们每…

CSP2024 前集训:csp-s模拟11

前言T1 挂了,后面几道赛时都不那么可做,T2 读假题了浪费太多时间,T3 没调出来。 T4 是原,但是整个机房只有一个人当时改了,所以还是没人写,因为 T4 是原,还加了个 T5,也不太可做。 T1 玩水 对于一个点 \((i,j)\),若 \(s_{i+1,j}=s_{i,j+1}\) 则称其为分点,若一个分店…

织梦网站数据库修改密码?

在织梦(DedeCMS)网站中修改数据库中的管理员密码,可以通过以下步骤进行:备份数据库:在进行任何数据库操作之前,请确保先备份整个数据库,以防止数据丢失。登录数据库管理工具:使用phpMyAdmin或其他MySQL数据库管理工具登录到您的数据库。选择对应的数据库:在数据库列表…

C# 并发控制框架:单线程环境下实现每秒百万级调度

前言 在工业自动化和机器视觉领域,对实时性、可靠性和效率的要求越来越高。为了满足这些需求,我们开发了一款专为工业自动化运动控制和机器视觉流程开发设计的 C# 并发流程控制框架。 该框架不仅适用于各种工业自动化场景,还能在单线程环境下实现每秒百万次以上的调度频率,…