万事通,专精部分领域的多功能 Transformer 智能体

news/2024/9/23 19:19:34

介绍

我们很高兴分享“万事通”(Jack of All Trades,简称 JAT) 项目,该项目旨在朝着通用智能体的方向发展。该项目最初是作为对 Gato (Reed 等,2022 年) 工作的公开复现启动的,Gato 提出训练一种能够执行视觉与语言以及决策任务的 Transformer。于是我们首先构建了 Gato 数据集的开放版本。随后,我们在此基础上训练了多模态 Transformer 模型,并针对处理顺序数据和连续值引入了若干改进。

总体而言,该项目取得了以下成果:

  • 发布了大量在各种任务上表现优异的 专家 RL 智能体
  • 发布了 JAT 数据集,这是第一个用于通用智能体训练的数据集。它包含了由专家智能体收集的数十万条专家轨迹。
  • 发布了 JAT 模型,这是一种基于 Transformer 的智能体,能够玩电子游戏、控制机器人执行各种任务、理解并在简单的导航环境中执行命令等!

数据集和专家策略

专家策略

传统的强化学习 (RL) 涉及在单一环境中训练策略。利用这些专家策略是构建多功能智能体的有效方法。我们选择了各种性质和难度不同的环境,包括 Atari、BabyAI、Meta-World 和 MuJoCo。在每个环境中,我们训练一个智能体,直到它达到最先进的性能水平。(对于 BabyAI,我们使用的是 BabyAI bot)。这些训练结果被称为专家智能体,并已在🤗 Hub 上发布。您可以在 JAT 数据集卡 中找到所有智能体的列表。

JAT 数据集

我们发布了 JAT 数据集,这是第一个用于通用智能体训练的数据集。JAT 数据集包含由上述专家智能体收集的数十万条专家轨迹。要使用此数据集,只需像从🤗 Hub 加载任何其他数据集一样加载它:

>>> from datasets import load_dataset
>>> dataset = load_dataset("jat-project/jat-dataset", "metaworld-assembly")
>>> first_episode = dataset["train"][0]
>>> first_episode.keys()
dict_keys(['continuous_observations', 'continuous_actions', 'rewards'])
>>> len(first_episode["rewards"])
500
>>> first_episode["continuous_actions"][0]
[6.459120273590088, 2.2422609329223633, -5.914587020874023, -19.799840927124023]

除了强化学习 (RL) 数据,我们还包含了文本数据集,以为用户提供独特的界面。因此,您还会发现 Wikipedia、Oscar、OK-VQA 和 Conceptual-Captions 的子集。

JAT 智能体架构

JAT 的架构基于 Transformer,使用了 EleutherAI 的 GPT-Neo 实现。JAT 的特别之处在于其嵌入机制,该机制专门用于内在地处理顺序决策任务。我们将观测嵌入与动作嵌入交错排列,并结合相应的奖励。

JAT 网络的架构。在顺序决策任务中,一方面将观测和奖励编码,另一方面将动作编码并交错排列。模型使用因果掩码自回归地生成下一个嵌入,并根据预期的模态进行解码。

每个嵌入因此对应于一个观测 (与奖励相关联) 或一个动作。那么 JAT 是如何编码这些信息的呢?这取决于数据的类型。如果数据 (观测或动作) 是图像 (如在 Atari 中的情况),那么 JAT 使用 CNN。如果是连续向量,则 JAT 使用线性层。最后,如果是离散值,JAT 使用线性投影层。同样的原理也用于模型输出,具体取决于要预测的数据类型。预测是因果的,将观测值移位一个时间步长。通过这种方式,智能体必须根据所有先前的观测和动作来预测下一个动作。

此外,我们认为让我们的智能体执行 NLP 和 CV 任务会很有趣。为此,我们还让编码器可以选择将文本和图像数据作为输入。对于文本数据,我们使用 GPT-2 的标记化策略,对于图像,我们使用 ViT 类型的编码器。

考虑到数据的模态可能因环境而异,JAT 如何计算损失呢?它分别计算每种模态的损失。对于图像和连续值,它使用 MSE 损失。对于离散值,它使用交叉熵损失。最终损失是序列中每个元素损失的平均值。 等等,这是否意味着我们对预测动作和观测赋予了相等的权重?实际上并不是这样,但我们将在 下文 中详细讨论。

实验与结果

我们在所有 157 个训练任务上评估 JAT。我们收集了 10 个回合的数据并记录总奖励。为了便于阅读,我们按领域汇总结果。

每个 RL 领域的汇总专家标准化得分及其 95%置信区间 (CI),作为学习步数的函数。

如果要用一个数字来总结这些结果,那就是 65.8%,这是在 4 个领域中相对于 JAT 专家的平均表现。这表明 JAT 能够在各种任务中模仿专家的表现。让我们更详细地看看:

  • 对于 Atari 57,智能体达到了专家得分的 14.1%,相当于人类表现的 37.6%。在 21 个游戏中超过了人类表现。
  • 对于 BabyAI,智能体达到了专家得分的 99.0%,仅在 1 个任务上未能超过专家得分的 50%。
  • 对于 Meta-World,智能体达到了专家得分的 65.5%。
  • 对于 MuJoCo,智能体达到了专家得分的 84.8%。

JAT 智能体在 Atari 57 基准测试中的人类标准化得分。

最令人印象深刻的是,JAT 在所有领域中使用 单一网络 实现了这一性能。为了衡量这一性能,让我们来看看 JAT 在一些任务中的渲染效果:

想试试吗?你可以的!JAT 模型 已在 🤗 Hub 上提供!

我们的模型显示了初步的文本任务处理能力,详情请参阅 论文。

预测观测值的惊人好处

在训练 RL 智能体时,主要目标是最大化未来奖励。但是,如果我们还要求智能体预测它将来会观测到的内容,这个额外的任务会帮助还是妨碍学习过程呢?

对于这个问题有两种对立的观点。一方面,学习预测观测值可以提供对环境更深入的理解,从而导致更好更快的学习。另一方面,这可能会使智能体偏离其主要目标,导致在观测和动作预测方面的表现平平。

为了解决这一争论,我们进行了一个实验,使用了一个结合观测损失和动作损失的损失函数,并用一个加权参数 ( \kappa ) 来平衡这两个目标。

对于所选任务的观测预测学习影响研究的汇总度量及 95%置信区间 (CI)。结果覆盖所选的 \( k \) 值范围,并基于每个任务 100 次评估。选择最佳的 \( k \) 值可以显著提高智能体的性能。

结果非常显著。当 \( k \) 值过高 (0.5) 时,预测观测的额外目标似乎阻碍了学习过程。但是,当 \( k \) 值较低时,对学习的影响可以忽略不计,智能体的表现与不将预测观测作为目标时相似。

然而,我们发现 \( k = 0.005 \) 左右是一个最佳点,此时学习预测观测实际上提高了智能体的学习效率。 我们的研究表明,只要平衡得当,将预测观测添加到学习过程中是有益的。这一发现对这类智能体的设计有重要意义,强调了辅助目标在提高学习效率方面的潜在价值。

所以,下次训练 RL 智能体时,可以考虑让它预测将来会观测到的内容。这可能会带来更好的表现和更快的学习速度!

结论

在这项工作中,我们介绍了 JAT,一个能够掌握各种顺序决策任务并在 NLP 和 CV 任务中表现出初步能力的多用途 Transformer 智能体。对于所有这些任务,JAT 都使用单一网络。我们的贡献包括发布专家级 RL 智能体、JAT 数据集和 JAT 模型。我们希望这项工作能够激发未来在通用智能体领域的研究,并有助于开发更多功能和更强大的 AI 系统。

下一步是什么?研究请求

我们相信,JAT 项目为通用智能体领域的研究开辟了新的方向,而我们只是刚刚开始。以下是一些未来工作的想法:

  • 改进数据: 尽管具有开创性,JAT 数据集仍处于初期阶段。专家轨迹仅来自每个环境中的一个专家智能体,这可能会导致一些偏差。尽管我们尽力达到了最先进的性能,但有些环境仍然具有挑战性。我们相信,收集更多的数据和训练更多的专家智能体将会 大有帮助
  • 使用离线 RL: JAT 智能体是使用基本的行为克隆训练的。这意味着两件事: (1) 我们无法利用次优轨迹,(2) JAT 智能体不能超过专家的表现。我们选择这种方法是为了简单,但我们相信使用离线 RL 可以 大大提高 智能体的性能,同时实现起来也不会太复杂。
  • 释放更聪明的多任务采样策略的全部潜力: 目前,JAT 智能体从所有任务中均匀采样数据,但这种方法可能会限制其表现。通过动态调整采样率以集中于最具挑战性的任务,我们可以加速智能体的学习过程并释放 显著的性能提升

相关链接

  • 📄 论文
  • 💻 源码
  • 🗂️ JAT 数据集
  • 🤖 JAT 模型

引文

@article{gallouedec2024jack,title = {{Jack of All Trades, Master of Some, a Multi-Purpose Transformer Agent}},author = {Gallouédec, Quentin and Beeching, Edward and Romac, Clément and Dellandréa, Emmanuel},journal = {arXiv preprint arXiv:2402.09844},year = {2024},url = {https://arxiv.org/abs/2402.09844}
}

英文原文: https://hf.co/blog/jat

原文作者: Quentin Gallouédec, Edward Beeching, Clément ROMAC, Thomas Wolf

译者: xiaodouzi

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ryyt.cn/news/31161.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈,一经查实,立即删除!

相关文章

WSL常用命令

WSL常用命令 WSL重启WSL中reboot和shutdown都无法使用, 我直接使用win下的WSL命令来实现重启的.wsl --shutdown # 关闭所有wsl wsl -l -v # 检查是否关闭关闭后再启动wsl即可. GUI程序中文字体显示为方块问题错误如下:检查已安装的字体$ fc-list # 若没有此命令,需先安装…

root用户远程登录云服务器失败 No supported authentication methods available (server sent: publickey)

1、平台:亚马逊AWS云、腾讯云服务器、MobaXterm2、问题:云服务器实例远程登录失败,显示:“No supported authentication methods available (server sent: publickey)”翻译:不支持可用的身份验证方法(服务器发送:publickey) 3、解决过程:初步判断:服务器远程登录配置文…

项目冲刺——第七篇Scrum冲刺博客

作业所属课程 所属课程作业要求 作业要求作业目标 总结第六天的敏捷开发,安排好第七天敏捷开发冲刺一、站立式会议 1、会议图片2、昨天已完成的内容成员 任务肖杨、梁丽贤 修改登陆模块的bug黄诃华、欧文杰 完成跨域支持的功能姚佳如、李慧娣 细化测试计划廖莹 协调团队、编写…

微信3.9.8.25机器人(Hook注入)搭建教程文档

开源地址 https://github.com/ttttupup/wxhelper 微信破解dll https://github.com/nefarius/Injector 注入工具 https://github.com/tom-snow/wechat-windows-versions/releases 微信历史版本 基本原理 启动指定版本PC微信以后,利用注入程序将dll文件注入到微信进程内,可…

【django学习-21】ModelForm方式,自定义数据校验

前言:我们在使用ModelForm新增数据时,除了使用默认的数据校验之外,还可以自定义数据校验 例如:有个靓号的列表,新增/编辑校验 1.代码示例1.1:modles.pyclass PrettyNum(models.Model):"""靓号表"""mobile = models.CharField(verbose_name=&…

【图像处理】使用matplotlib库显示灰度图像为自定义颜色(2)

在下面的代码中,facies_img的值只有[0,1,2]表明图像是灰度图像。通过下面的代码可以让图像显示为彩色图像 import matplotlib.pyplot as plt import matplotlib.colors as mcolors from PIL import Image import os import random import numpy as np# 路径设置 data_dir = da…

无需手动操作:利用 Playwright 自动上传文件

前言 Playwright 是一个由 Microsoft 开发的自动化测试工具,它提供了跨浏览器的自动化测试能力,包括 Chrome、Firefox 和 Safari。除了测试之外,Playwright 还可以用于执行浏览器操作,例如模拟用户行为来实现文件上传功能。在本文中,我们将使用 Playwright 和 Python 实现…

QT开发工具QTCreator设置格式美化,代码补全提示

工欲善其事,必先利其器:下面介绍如何配置格式美化功能 (1)先下载:astyle.exe (2)编辑astyle.astylerc点击Apply->OK(3)帮助 重启软件:测试效果 格式化化后: 4556