Pytorch入门—Tensors张量的学习

news/2024/10/6 16:23:51

Tensors张量的学习

张量是一种特殊的数据结构,与数组和矩阵非常相似。在PyTorch中,我们使用张量来编码模型的输入和输出,以及模型的参数。

张量类似于NumPy的ndarrays,只是张量可以在GPU或其他硬件加速器上运行。事实上,张量和NumPy数组通常可以共享相同的底层内存,从而无需复制数据(请参阅使用NumPy进行桥接)。张量还针对自动微分进行了优化(我们将在稍后的Autograd部分中看到更多内容)。如果您熟悉ndarrays,您将熟悉Tensor API。

import torch
import numpy as np

Initializing a Tensor 初始化张量

Directly from data 直接从数据中初始化

张量可以直接从数据中创建。数据类型是自动推断的。

data = [[1, 2],[3, 4]]
x_data = torch.tensor(data)

image-20240507094522422

From a NumPy array 从NumPy数组初始化

张量可以从NumPy数组中创建(反之亦然—请参阅使用NumPy进行桥接)。

np_array = np.array(data)
x_np = torch.from_numpy(np_array)

From another tensor 从另一个tensor初始化

新张量保留参数张量的属性(形状,数据类型),除非显式覆盖。

x_ones = torch.ones_like(x_data) # retains the properties of x_data
print(f"Ones Tensor: \n {x_ones} \n")x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data
print(f"Random Tensor: \n {x_rand} \n")

image-20240507095106372

With random or constant values
具有随机值或常量值

shape 是张量维度的元组。在下面的函数中,它确定输出张量的维数。

shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")

image-20240507095334820

Attributes of a Tensor 张量的属性

张量属性描述了它们的形状、数据类型以及存储它们的设备。

tensor = torch.rand(3,4)print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")

image-20240507095546591

Standard numpy-like indexing and slicing
标准的numpy式索引和切片

tensor = torch.ones(4, 4)
print(f"First row: {tensor[0]}")
print(f"First column: {tensor[:, 0]}")
print(f"Last column: {tensor[..., -1]}")
tensor[:,1] = 0
print(tensor)

image-20240507100001132

Joining tensors 连接张量

连接张量您可以使用 torch.cat 将一系列张量沿着给定的维度连接起来。另请参见torch.stack,这是另一个与 torch.cat 略有不同的张量连接运算符。

t1 = torch.cat([tensor, tensor, tensor], dim=1)
print(t1)

image-20240507100440770

Arithmetic operations 算术运算

# This computes the matrix multiplication between two tensors. y1, y2, y3 will have the same value
# ``tensor.T`` returns the transpose of a tensor
y1 = tensor @ tensor.T
y2 = tensor.matmul(tensor.T)y3 = torch.rand_like(y1)
torch.matmul(tensor, tensor.T, out=y3)# This computes the element-wise product. z1, z2, z3 will have the same value
z1 = tensor * tensor
z2 = tensor.mul(tensor)z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)

这段代码主要演示了如何在PyTorch中进行矩阵乘法和元素级乘法。

  1. 矩阵乘法:

    y1 = tensor @ tensor.Ty2 = tensor.matmul(tensor.T) 这两行代码都在进行矩阵乘法。@操作符和matmul函数都可以用于矩阵乘法。tensor.T返回tensor的转置。

    y3 = torch.rand_like(y1) 创建了一个与y1形状相同,元素为随机数的新tensor。

    torch.matmul(tensor, tensor.T, out=y3) 这行代码也在进行矩阵乘法,但是结果被直接写入了y3,而不是创建新的tensor。

  2. 元素级乘法:

    z1 = tensor * tensorz2 = tensor.mul(tensor) 这两行代码都在进行元素级乘法。*操作符和mul函数都可以用于元素级乘法。

    z3 = torch.rand_like(tensor) 创建了一个与tensor形状相同,元素为随机数的新tensor。

    torch.mul(tensor, tensor, out=z3) 这行代码也在进行元素级乘法,但是结果被直接写入了z3,而不是创建新的tensor。

矩阵乘法与元素级乘法是什么?

矩阵乘法和元素级乘法是两种不同的数学运算。

  1. 矩阵乘法:也被称为点积,是一种二元运算,将两个矩阵相乘以产生第三个矩阵。假设我们有两个矩阵A和B,A的形状是(m, n),B的形状是(n, p),那么我们可以进行矩阵乘法得到一个新的矩阵C,其形状是(m, p)。C中的每个元素是通过将A的行向量和B的列向量对应元素相乘然后求和得到的。
  2. 元素级乘法:也被称为Hadamard积,是一种二元运算,将两个矩阵相乘以产生第三个矩阵。假设我们有两个形状相同的矩阵A和B,那么我们可以进行元素级乘法得到一个新的矩阵C,其形状与A和B相同。C中的每个元素是通过将A和B中对应位置的元素相乘得到的。

在Python的NumPy和PyTorch库中,你可以使用@matmul函数进行矩阵乘法,使用*mul函数进行元素级乘法。

Single-element tensors

单元素张量

如果你有一个单元素张量,例如通过将张量的所有值聚合为一个值,你可以使用 item() 将它转换为Python数值。

agg = tensor.sum()
agg_item = agg.item()
print(agg_item, type(agg_item))

image-20240507102052385

In-place operations

就地操作

将结果存储到操作数中的操作称为就地操作。它们由 _ 后缀表示。例如: x.copy_(y)x.t_() ,将更改 x

print(f"{tensor} \n")
tensor.add_(5)
print(tensor)

image-20240507102216996

NOTE 注意
就地操作保存一些内存,但是在计算导数时可能会出现问题,因为会立即丢失历史。因此,不鼓励使用它们。

Bridge with NumPy

CPU和NumPy数组上的张量可以共享它们的底层内存位置,改变一个就会改变另一个。

张量到NumPy数组

t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")

image-20240507102621371

张量的变化反映在NumPy数组中。

t.add_(1)
print(f"t: {t}")
print(f"n: {n}")

image-20240507102720944

NumPy数组到张量

n = np.ones(5)
t = torch.from_numpy(n)

NumPy数组中的变化反映在张量中。

np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")

image-20240507102955148

Notebook来源:

Tensors - PyTorch Tuesday 2.3.0+ cu 121文档 --- Tensors — PyTorch Tutorials 2.3.0+cu121 documentation

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ryyt.cn/news/28452.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈,一经查实,立即删除!

相关文章

sql 存储过程proc中的参数 是 @details 表值 参数类型的时候,如何如何查看 自定义表的 表结构和字段信息

if 数据库工具 是 sqlserver2008 R2 去安装一个 sql prompt 就行了,鼠标放上去会自动提示 表结构信息 else

RAG:AI大模型联合向量数据库和 Llama-index,助力检索增强生成技术

RAG:AI大模型联合向量数据库和 Llama-index,助力检索增强生成技术RAG:AI大模型联合向量数据库和 Llama-index,助力检索增强生成技术 在大模型爆发的时代,快速准确地从大量数据中检索出有价值的信息变得至关重要。检索增强生成(RAG)技术,结合了传统的信息检索和最新的大…

《Decoupled Contrastive Learning for Long-Tailed Recognition》阅读笔记

论文标题 《Decoupled Contrastive Learning for Long-Tailed Recognition》 针对长尾识别的解耦对比学习 作者 Shiyu Xuan 和 Shiliang Zhang 来自北京大学计算机学院多媒体信息处理国家重点实验室 初读 摘要监督对比损失(Supervised Contrastive Loss, SCL)监督对比损失在视…

鸿蒙OS NEXT的推出,目标是更广阔的智能设备市场

Hybird App开发技术(尤其是小程序+原生技术)为鸿蒙应用开发带来了诸多利好,它不仅可以帮助开发者快速开发高质量的应用,还可以降低开发成本,提高开发效率。可能有一些中大型企业的开发同学会问,那还是没有解决已有的App鸿蒙化。换位思考,其实是优先级的问题,如果现在留…

交互式应用安全测试(Interactive application security testing IAST)

交互式应用安全测试(Interactive application security testing IAST)一、IAST介绍 交互式应用安全测试(Interactive application security testing IAST)是一个在应用和API中自动化识别和诊断软件漏洞的技术。如果从名字的缩写来看,插桩(Instrumented)式应用安全测试或…

A Revisiting Study of Appropriate Offline Evaluation for Top-N Recommendation Algorithms

目录概实验设置Evaluation MetricsMetric 的一致性不同的 metrics 导致的算法排名差异Sampled metricsSampled metrics 是否会导致和 full ranking 的 metrics 不同的评价数据集构建数据集的选择和预处理\(k\)-core filtering 的影响数据集的切分数据集的切分方式对结果的影响数…

Ranorex日志备份

1.简要 由于我这里设置了定期删除日志文件,有关一些测试成功的日志报告就需要我们提前保存! 请同时备份 rxlog 和 data 文件!!!2.复原 2.1 复原并不是放在项目根目录下的reports文件夹中,注意到这里都只是快捷方式2.2 应当放到 bin>debug>Reports>2024... 下, 这里的实…

Markdown和Latex中文字上下标的方法

本文介绍了4种方法,可以在Markdown或者是LaTex的语法中实现文字、符号的上下标。公式的上下标大家都很清楚了,这里主要介绍的是文字的上下标,而且要保持使用归正的字体。在这些方法中,既可以使用公式+取消斜体的操作,也可以使用前端的一些上下标标签,还可以直接调用LaTex…